We will count synapses and motifs in the CA3 network
In [1]:
from __future__ import division
from terminaltables import AsciiTable
In [2]:
import inet
inet.__version__
Out[2]:
In [3]:
from inet import DataLoader
In [4]:
mydataset = DataLoader('../data/CA3/') # 1102 experiments
In [5]:
print(mydataset.motif) # number of connections tested and found for every type
In [6]:
#number of interneurons and principal cells
print('{:4d} principal cells recorded'.format(mydataset.nPC))
print('{:4d} interneurons recorded'.format(mydataset.nIN)) #
In [7]:
mydataset.configuration # number of recording configurations
Out[7]:
In [8]:
PEE = mydataset.motif.ee_chem_found/mydataset.motif.ee_chem_tested
print('Connection probability between CA3 cells = {:4.4f} %'.format(PEE))
the element in the list with IN[0] contains zero interneurons (all the rest are principal neurons)
In [9]:
mydataset.IN[0] # this is the whole data set
Out[9]:
In [10]:
y = mydataset.stats()
print AsciiTable(y).table
In [11]:
mymotifs = mydataset.motif
info = [
['Connection type', 'Value'],
['CA3-CA3 chemical synapses', mymotifs.ee_chem_found],
['CA3-CA3 electrical synapses', mymotifs.ee_elec_found],
[' ',' '],
['CA3-CA3 bidirectional motifs', mymotifs.ee_c2_found],
['CA3-CA3 divergent motifs', mymotifs.ee_div_found],
['CA3-CA3 convergetn motifs', mymotifs.ee_con_found],
['CA3-CA3 linear chains', mymotifs.ee_lin_found],
[' ',' '],
['P(CA3-CA3) unidirectional motifs', mymotifs.ee_chem_found/mymotifs.ee_chem_tested],
['P(CA3-CA3) bidirectional motifs', mymotifs.ee_c2_found/mymotifs.ee_c2_tested],
['P(CA3-CA3) convergent motifs', mymotifs.ee_con_found/mymotifs.ee_con_tested],
['P(CA3-CA3) divergent motifs', mymotifs.ee_div_found/mymotifs.ee_div_tested],
['P(CA3-CA3) chain motifs', mymotifs.ee_lin_found/mymotifs.ee_lin_tested],
]
table = AsciiTable(info)
print (table.table)